

Standardized Approach for Assessing Potential Risks to Amphibians Exposed to Sediment

NAVFAC (Naval Facilities Engineering Command)

Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Literature review and development of amphibian screening values
 - Phase 2
 - Development of laboratory testing techniques for amphibians exposed to sediment
 - Phase 3
 - Validation of laboratory testing techniques
 - Phase 4
 - Development of guidance manual for assessing potential risks to amphibians at Naval facilities
- Summary and Conclusions

What's the big deal with Amphibians???

- Wetlands can comprise a substantial portion of open space at many Naval facilities
- Wetlands are prime habitat for amphibians
- Amphibians play a key ecological role serving both as an important prey and predator in wetlands
- Limited amphibian ecotoxicity data are available
- Wetland risk management decisions are often made using inappropriate species (e.g., fathead minnows) that may not be typical of the wetland

What's the big deal with Amphibians??? (cont.)

- Global declines documented since the 1980s.
- Possible factors include:
 - Changes in atmospheric conditions
 - Habitat loss/alteration
 - Invasive species interactions
 - Exposure to disease and pathogens
 - Chronic and acute exposure to environmental contaminants

Specific Program Objectives

- Selected by the Alternative RemediationTechnology Team (ARTT) to be funded through the Navy's Pollution Abatement Ashore Technology Demonstration/Validation Program – Y0817
- Develop a standardized risk assessment protocol for evaluating potential risks to amphibians at Navy sites
- Protocol can be used to help the Navy avoid costly and unnecessary wetland alteration based on use of inappropriate ecological endpoints

Amphibian Biology

Amphibian Taxonomy

Kindom Animalia

Phylum Chordata

Sub-Phylum Vertebrata

Class Amphibia

- Amphibians are one of eight vertebrate classes
- From the Greek: *amphi* both *bios* life

Amphibian Biology

Two of the Major Amphibian Groups Inhabit North America

Caudata Salamanders

Ambystoma tigrinum

Anurans Frogs/Toads

R. clamitans

- Ectotherms (cold-blooded)
 - Low metabolic rate
 - Moist permeable skin for oxygen exchange

R. pipiens

- Amphibian Breeding
 - Synchronized breeding
 - External fertilization
 - Biphasic life cycle

Habitat Use

- Adults/Juveniles
 - Terrestrial
 - Wetlands

- Egg/Larvae
 - Wetlands

Amphibian Trophic Status

- Predator
 - Algae and periphyton
 - Invertebrates
 - Small higher trophic organisms

- Prey
 - Predatory vertebrates
 - Adult invertebrates

Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Literature review and development of amphibian screening values
 - Phase 2
 - Phase 3
 - Phase 4
- Summary and Conclusions

Phase 1: Literature Review and Development of Amphibian Screening Values

- Selection of Constituents of Potential Concern
- Literature Review
- Amphibian Screening Levels
 - Surface water toxicity
 - Sediment toxicity

R. catesbeiana

Constituents of Potential Concern

■ 10 COPCs were selected for the detailed literature search because they are commonly identified at CERCLA, RCRA, and other investigated Navy sites

Cadmium

- Mercury
- 4,4 DDT

Chromium

Nickel

PAHs

Copper

Zinc

OE Compounds

Lead

PCBs

Literature Review Results

- Data limitations
 - Few data available and lack of standardized tests limits comparison of results
- Ecotoxicological data
 - Majority of ecotoxicological tests used surface water as exposure medium
 - Only two peer-reviewed studies with sediment or hydric soil were found

Amphibian Screening Levels

- Five of the 10 COPCs with most robust data set were evaluated further:
 - Four metals (Cd, Cu, Hg, and Zn)
 - One organochlorine (DDT)
 - Lethal effects data only (no sub-lethal)
 - Surface water data only
- Lethal effects percentile thresholds calculated
 - 10th percentile
 - 50th percentile
 - Evaluated relative to Ambient Water Quality Criteria (AWQC)

Recommendations

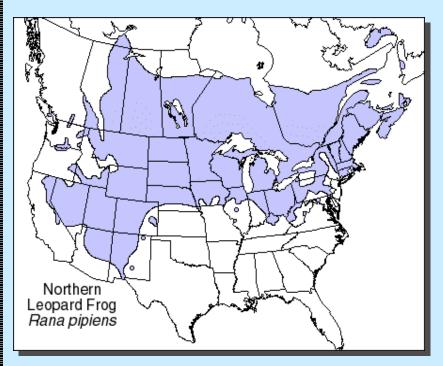
- Development of Standardized Toxicity Test
 - Early life stage North American species
 - Lethal and sub-lethal endpoints
- Validation of Test
 - High bioavailability spiked assays
 - Develop dose-response curve
 - Consider aging effects in hydric soil
 - Compounds to consider: divalent metals

Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Phase 2
 - Development of laboratory testing techniques for amphibians exposed to sediment
 - Phase 3
 - Phase 4
- Summary and Conclusions

Phase 2: Development of Laboratory Testing Techniques for Amphibians Exposed to Sediment

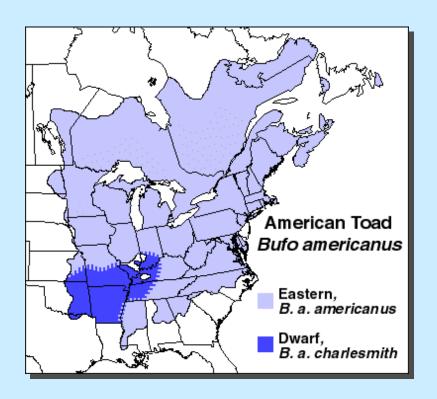
- Short-Term Chronic Exposure Tests
 - Sediment exposure
 - Review of existing test methods
 - Produce draft standard operating procedure (SOP)



SOP Development

- Design a series of tests to identify:
 - Appropriate and available test species
 - Most sensitive age of test organisms
 - Appropriate test length
 - Appropriate test system
 - Flow-through or static test conditions
 - ► Food preference
 - Required volumes
 - Most sensitive test endpoints

Northern Leopard Frog – Rana pipiens



- Small- to medium-sized
- Commercially available as tadpoles during breeding seasons

- Relatively short tadpole phase
- Documented developmental stages
- Native North American species
- Large habitat range

American Toad – Bufo americanus

© David M. Green

- Small- to medium-sized
- May be commercially available as tadpoles
- Easily collected in the wild

- Relatively short tadpole phase
- Native North American species
- Wide habitat range covering much of eastern America

www.npwrc.usgs.gov/narcam/idguide/american.htm

General Observations

- Natural sediment serves as superior growth medium relative to artificial sediment
- Tetramin[®] is an acceptable food medium
- Flow-through tests recommended to eliminate ammonia buildup
- Growth (length and width) is best measurement to quantify sub-lethal effects on tadpoles
- Older tadpoles may be less sensitive to contaminants than younger tadpoles

Draft SOP

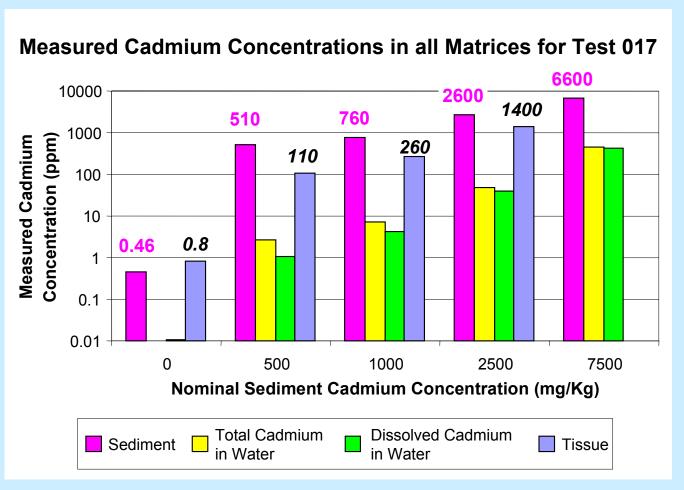
- 600 mL test vessels
- 100 mL sediment: 175 mL overlying water
- Recently hatched Rana or Bufo tadpoles
 - Before feeding starts
- Fed ground Tetramin[®] once feeding begins (Gosner stage 25)

Draft SOP (cont.)

- Eight replicates per treatment
- Five organisms per chamber (40 per treatment)
- Test duration of 10 days
 - Survival, body width, and body length
- Test temperature of 23±1°C
- Dissolved oxygen maintained above 3 mg/L
- Flow-through test system

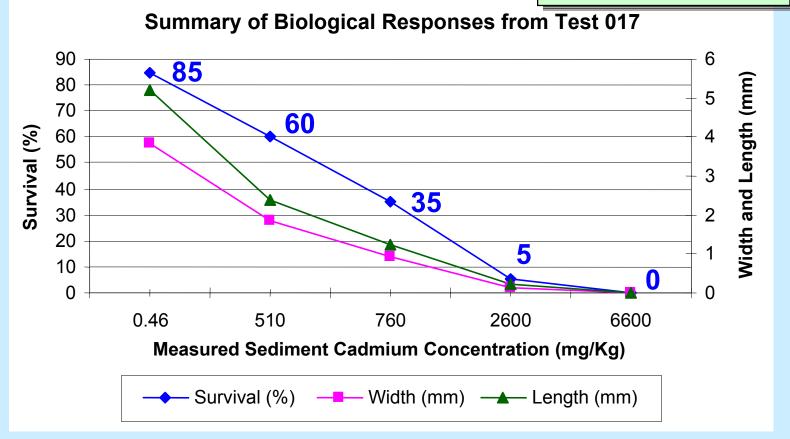
Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Phase 2
 - Phase 3
 - ▶ Validation of laboratory testing techniques
 - Phase 4
- Summary and Conclusions

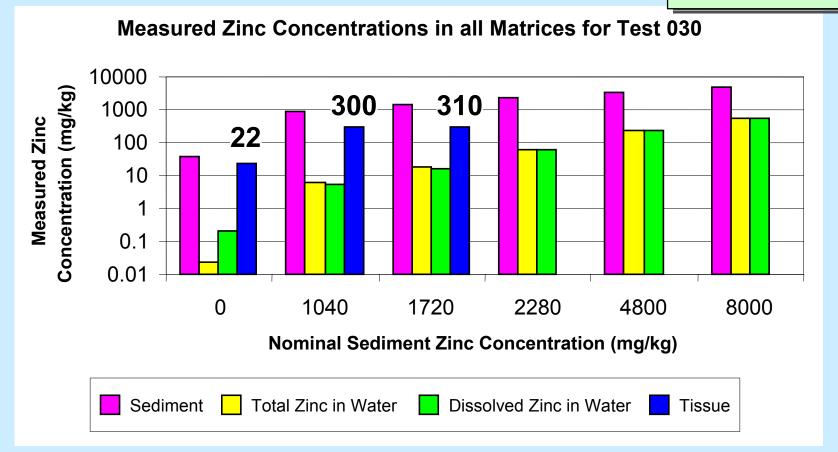

Phase 3: Validation of Testing Techniques

Confirmatory Phase

- Compare results with published literature
- Spiked sediment assays
 - Cadmium
 - Copper
 - Lead
 - Zinc
- Effects of organic carbon
 - Reduces bioavailability of Copper and Zinc

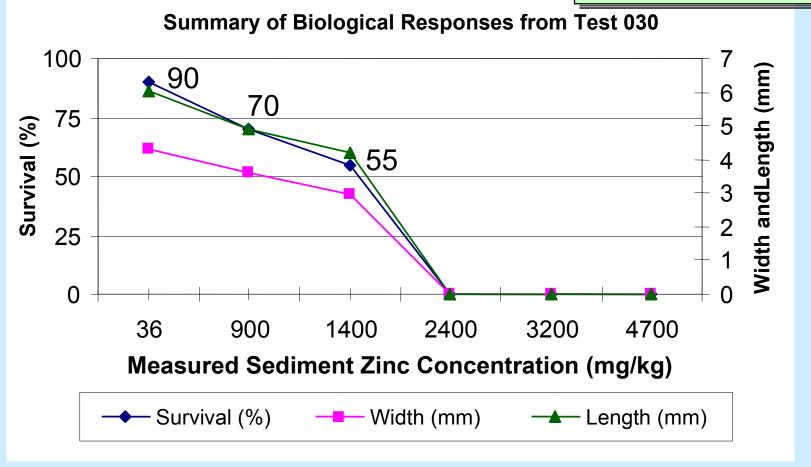

Evaluated Cadmium Concentrations in All Matrices

Evaluated Lethal and Sub-Lethal Endpoints


Survival NOEC

- 110 ppm in tissue
- 510 ppm in sediment

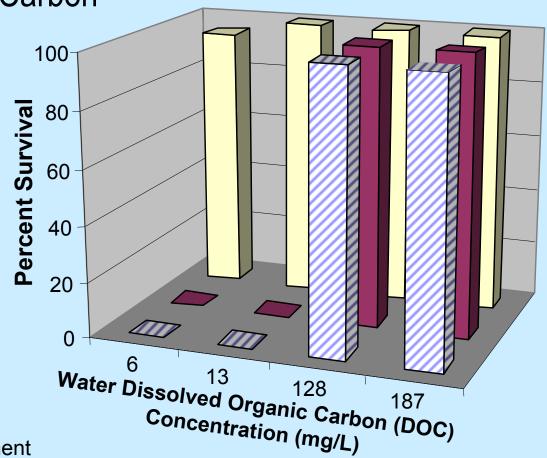
Evaluated Zinc Concentrations in All Matrices


No survival in highest concentrations – no tissue at test termination

Evaluated Lethal and Sub-lethal Endpoints

Survival NOEC

- 300 ppm in tissue
- 900 ppm in sediment


- Effects of Organic Carbon
 - Increased organic carbon resulted in decreased toxicity
 - ► Higher NOECs

Organ	nic Carbon Conce	Survival NOECs		
Total in Sediment (mg/kg)	Total in Water (mg/L)	Dissolved in Water (mg/L)	Sediment Copper Concentration (mg/kg)	
125	7	6	<1	
1,300	32	13	5.2	
13,000	155	128	250	
14,000	223	187	420	

■ Effects of Organic Carbon

Increased organic carbon resulted in decreased toxicity

- 300 mg/kg Cu
- 150 mg/kg Cu
- 0 mg/kg Cu Control sediment

Tadpole Survival – Test 034

Results

Rana & Bufo tadpoles are generally more tolerant of Cu, Cd, Pb, and Zn than test organisms used to develop sediment and water quality criteria

	Chronic AWQC* (µg/L)		Lowest IC ₂₅ ** (µg/L)	
Surface Water	Hardness 100 mg/L	Hardness 500 mg/L	Bufo	Rana
Cadmium	0.25	0.84	1,000	540
* AWQC – Ambient Water Quality Criteria ** IC – Inhibition Concentration				
	Low Effect Levels (mg/kg)		Lowest IC ₂₅ * (mg/kg)	
Sediment	LEL	ERL	Bufo	Rana
Cadmium	0.6	1.2	540	230

Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Phase 2
 - Phase 3
 - Phase 4
 - Development of guidance manual for assessing potential risks to amphibians at Navy facilities
- Summary and Conclusions

Phase 4: Develop a Standardized Guidance Manual

RPM guide describing how to assess risks to amphibians

Appendices will include summary reports of Phases 1

through 3

R. pipiens

Preliminary RPM Guide Outline

1.0 INTRODUCTION

1.1 Pro	ject Scope
---------	------------

- 1.2 Project Background
- 1.3 Problem Statement
- 1.4 Guidance Document Organization

2.0 AMPHIBIANS AS ECOLOGICAL INDICATORS

- 2.1 Amphibian Classification
- 2.2 Amphibian Physiology
- 2.3 Amphibian Breeding Ecology
- 2.4 Habitat Use
- 2.5 Amphibian Trophic Status
- 2.6 Other Stressors
- 2.7 State of the Science

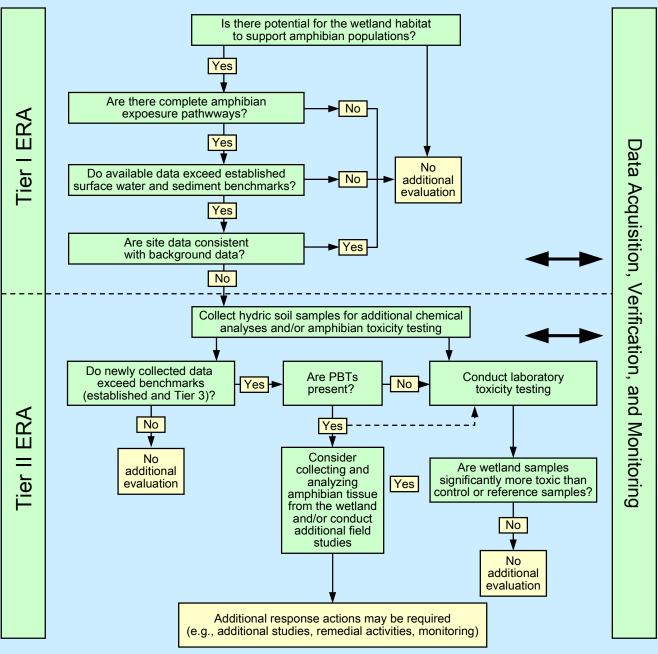
3.0 TIER I INITIAL EVALUATION

- 3.1 Evaluation of Potential Habitat
- 3.2 Evaluation of Available Data
- 3.3 Recommendations/Need for Additional Evaluation

4.0 TIER II EVALUATION

- 4.1 Additional Screening Against Benchmarks
- 4.2 Amphibian Toxicity Testing
- 4.3 Bioaccumulation Sampling/Testing
- 4.4 Field Surveys

5.0 SUMMARY/RECOMMENDATIONS/NEED FOR FUTURE WORK


6.0 LITERATURE CITED

APPENDIX A LITERATURE REVIEW & INTERPRETATION

APPENDIX B SOP DEVELOPMENT

APPENDIX C SOP VALIDATION

Phase 4

Example Flow Chart to Assess Risk to Amphibians

Presentation Overview Slide

- Project Background and Amphibian Biology
- Project Phases
 - Phase 1
 - Phase 2
 - Phase 3
 - Phase 4
- Summary and Conclusions

Cost Information

- 10-day sediment amphibian toxicity test is approximately \$750 - \$1,100 per sample
- Price range depends on number of samples more samples allows a lower per-sample cost
- Standard Hyalella azteca or Chironomus tentans test is approximately \$600 - \$900 per sample

Summary and Conclusions

- Allow the Navy and DoD to develop more environmentally relevant risk assessments
- Risk managers can use this information to identify cleanup levels and set remediation goals
- Avoid costly and unnecessary wetland alteration based on use of inappropriate ecological endpoints
- Amphibian risk assessment web-based training tool will be available on NAVFAC's T2 website in May 2003

Questions

